چاپ
نقش پلیمرها،کامپوزیت های پلیمری در خودروسازی
سه شنبه 30 آذر 1389
مترجم : حبیب الله علیخانی
ویرایش؛دپارتمان آموزشی Gfactor
منبع : functional filler for plastics /marino xanthos.


پلیمرها و کامپوزیت های پلیمری
ترموست ها و ترموپلاست ها


تقریبا ۸۵% از پلیمرهای تولیدی در سراسر دنیا ترموپلاست هستند. آنها را می توان به دو گروه گسترده ی آمورف و کریستالی تقسیم بندی کرد. (این تقسیم بندی با توجه به ویژگی دمای تبدیل آنها انجام می شود.)
ترموپلاست های آمورف بوسیله ی دمای تبدیل به حالت شیشه ای شان (Tg) شناخته می شوند. در دماهای بالای Tg مدول به سرعت کاهش پیدا می کند و پلیمر خاصیت شبه مایع پیدا می کند. ترموپلاست های آمورف عموماً در دمای بالای Tg و به آسانی تغییر شکل پیدا می کنند. (شکل دهی می شوند.) Tg ممکن است دمایی پایین باشد مثلا Tg پلی وینیل کلراید(PVC)، ۶۵ درجه سانتی گراد است و یا امکان دارد این دما بسیار بالا باشد مثلاً Tg پلی آمید ایمید (PAI) 295 درجه سانتی گراد است. ترموپلاست های کریستالی یا به طور صحیح تر، ترموپلاست های نیمه کریستالی می توانند درجات متنوعی از کریستالینیتی (از ۲۰ تا ۹۰%) داشته باشند. عموماً این پلیمرها را در دمای بالاتر از دمای ذوب فاز کریستالی و همچنین بالاتر از Tg فاز آمورف پلیمر کریستالی است. دمای ذوب پلیمرها می تواند بالا مثلاً ۳۶۵ درجه سانتی گراد برای پلی اترکتون (PEK) و یا پایین مثلاً ۱۱۰درجه سانتی گراد برای پلی اتیلن با دانسیته ی پایین (LDPE)و حتی پایین تر از این مقدار مثلاً دمای ذوب کوپلیمر اتیلن وینیل استات (EVA)باشد. بمحض سرد شدن، کریستالیزاسیون باید اتفاق افتد. (به طور بهتر، این کار باید در چند ثانیه اتفاق افتد). کریستالیزاسیون اندوده اغلب پس از سرد شدن و در طی چند ساعت پس از فرآیند ذوب شدن اتفاق می افتد.

بیش از ۷۰درصد از کل تولید ترموپلاست ها مربوط به زرین های ارزان قیمت و پرحجم زیر است:


۱) پلی اتیلن(PE) با دانسیته های مختلف
۲) پلی پروپیلین ایزوتاکتیک (Isotactic Polypropylene)
3) پلی استیرن (PS)
4) پلی وینیل کلراید (PVC)

پس از این ۴ نوع پلیمر، پلیمرهای زیر در درجه ی دوم هستند:

۱) اکریلیک
۲) اکریلونیتریل-بوتادین-استیرن(ABS)
3) پلی استیرن ضربه گیر (HIPS)

پلاستیک های مهندسی مانند استال ها (acetals)، پلی آمیدها، پلی کربنات، پلی استرها، پلی فنیلن اکسید و مخلوط های آنها به طور روزافزون در کاربردهای با کارایی بالا (high-perfromanceapplications) استفاده می شوند. پلیمرهای خاص مانند پلیمرهای کریستال مایع، پلی سولفون ها، پلی ایمیدها، پلی فنیلن سولفید، پلی اترکتون و فلئوروپلیمرها به خاطر دمای Tg یا دمای ذوب بالایشان (۲۹۰-۳۵۰درجه سانتی گراد) در تکنولوژی های پیشرفته کاربرد دارند.

رزین های ترموست معمولی عبارتند از:

پلی استرهای اشباع نشده، رزین های فتولیک، رزین های آمپنو، رزین های اوره/فرمالدهید، پلی یوریتان ها، رزین های اپوکسی و سیلیکون هاست.
ترموست های خاص که در کاربردهای ویژه مصرف می شوند عبارتند از:

پلی بیسمال ایمیدها (Polybismaleimides) و پلی ایمیدها و پلی بنزی ایمید ازول (Polybenzimidazoles) رزین های ترموست معمولاً مایع های و با ویسکوزیته ی پایین یا جامدات با وزن ملکولی کم هستند که بوسیله ی افزودنی های مناسب (عوامل اتصال دهنده ی عرضی) عمل آوری می شوند. همچنین این رزین ها بوسیله ی پر کننده ها والیاف تقویت می گردند تا خواص گرمایی و پایداری ابعادی آنها بالا برده شود. این مسئله به طور مکرر اظهار شده است که از نقطه نظر تردی مفرط این مواد،بسیاری از ترموست ها با الیاف و پرکننده ها ترکیب می شوند.
فرآیند شکل دهی ترموپلاست ها و ترموست ها
عموماً عملیاتی که در آن پلیمرهای جامد یا مایع به محصولات کامل تبدیل می شوند، فرآیند شکل دهی پلیمر (Polymer processing) گفته می شود. فرآیندهای شکل دهی پلیمر شامل چندین مرحله می باشد.
الف) عملیات های پیش شکل دهی (Preshaping)

فرآیند پیش شکل دهی شامل همه یا تعدادی از فرآیندهای زیر می باشد:

۱) تهیه ی اجزای جامد پلیمر
۲) ذوب یا گرم کردن تا حد نرم شدن
۳) متراکم کردن و پمپ کردن مذاب پلیمر
۴) مخلوط کردن پلیمر به صورت هموژن و یا پراکنده ساخن افزودنی ها
۵) تبخیر و زدایش مونومرهای اضافی، حلال، آلودگی ها و رطوبت

هدف کلی از فرآیندهای بالا، ایجاد یک پلیمر ترموپلاست و یا یک ترموست اولیه در حالت سیالی قابل شکل دهی است. در واقع ما می خواهیم به حالتی برسیم که بتوانیم به وسیله ی قالب این سیال را شکل دهی کنیم. پس از این فرآیند ترموپلاست ها بوسیله ی سرد کردن و ترموست ها بوسیله ی واکنش شیمیایی،جامد می شوند.

ب) عملیات شکل دهی

در این فرآیند ساختار اصلی قطعه بوجود می آید. (در واقع ساختار یعنی جهت گیری ملکولی، مرفولوژی). این فرآیند باعث می گردد تا خواص فیزیکی و مکانیکی پلیمر بهبود یابد. روش های شکل دهی عمده عبارتند از شکل دهی با قالب، مولدینگ (molding)، کستینگ (casting)، غلطک زنی (calendering) و پوشش دهی.

ج) این عملیات پس از شکل دهی

این عملیات های تکمیلی عبارتند از تزیین کردن، افزودن یراق آلات، چسب کاری، درزگیری، رنگ رزی، ایجاد نقش و نگار و متالایزینگ.
پس از پیشرفت ناگهانی در تولید ترموپلاست ها که پس از جنگ جهانی دوم رخ داد، پیشرفت های جدید و گذشته منجر به پدید آمدن ماشین های شکل دهی و تکنیک های گوناگونی در این زمینه شد. برخی از فرآیندهای شکل دهی پلیمرها برای ترموپلاست ها مناسبند در حالی که برخی دیگر تنها برای ترموست ها و ترموپلاست هایی با قابلیت ایجاد پیوند عرضی در آنها قابل استفاده می باشد.
همچنین برخی ازاین روش ها را می توان با اصلاح نمودن برای هر دو گروه ترموپلاست و ترموست استفاده نمود. در جدول ۱ خلاصه ای از روش های شکل دهی عمده آورده شده است. اکسترود کردن متداولترین روش شکل دهی ترموپلاست هاست. تقریباً ۵۰ درصد از اجناس ترموپلاست بوسیله ی فرآیند اکسترود کردن به محصولاتی از جمله: پروفیل، لوله، فیلم ها، صفحات، کابل و سیم تبدیل می شوند. قالبگیری تزریقی پس از اکسترود کردن روش متداول تر می باشد. تقریباً ۱۵% از اجناس ترموپلاست بوسیله ی این روش تولید می شوند. سایر روش های شکل دهی متداول عبارتند از: قالب گیری بادی (blow molding)، قالب گیری چرخشی (rotomolding)، شکل دهی حرارتی (Thermoforming) و غلطک زنی (calendering).
نوع فرآیند مورد استفاده جهت تولید محصولات پلاستیکی بوسیله ی عواملی همچون حجم تولید، قیمت ماشین آلات و قالب و امکانات و محدودیت های یک فرآیند خاص تعیین می گردد. برای مثال باید گفت: اشکال دقیق و پیچیده را می توان بوسیله ی قالب گیری تزریقی، اشکال توخالی را بوسیله ی قالب گیری بادی یا قالب گیری چرخشی و اشکال یا مقطع معین را با روش اکستروژن بدست آورد. روش های شکل دهی برای ترموست ها، به طور خاص ترموست های تقویت شده که با پلیمرهای مایع سروکار دارند، در اغلب موارد با روش شکل دهی ترموپلاست ها کاملاً متفاوت است. مصرف روز افزون پلیمرها نه تنها موجب افزایش تنوع ماشین آلات شکل دهی شده است بلکه استفاده از گستره ی وسیعی از اصلاح کننده های جامد و مایع مانند پرکننده ها و تقویت کننده ها را دربر داشته است. پیشرفت های مهم در زمینه ی وفق گرفتن این افزودنی ها بوسیله ی بهبود فرآیند مخلوط کردن پلیمر/ادوات مخلوط کننده ایجاد شده است. مخلوط کننده های رزین ترموپلاست پلیمر را به همراه اصلاح کننده ها ترکیب می کنند که حجم مواد اولیه ی مصرفی در این مخلوط کن ها بالاست. این پلیمرها پس از مخلوط شدن اکسترود می شوند. (فرآیند اکسترود آنها به صورت مداوم است). مواد اکسترود شده سپس به واحد پلاتایزر (Pelletizer) برده شده و در آنجا خوراک بخش های شکل دهی ثانویه می شود.
تهیه کنندگان رزین های ترموست، رزین های حساس به دما را با پرکننده، افزودنی و یا رنگ دانه مخلوط می کنند (این عمل مخلوط کردن در مخلوط کن های مختلف صورت می پذیرد) سپس مواد با قابلیت قالب گیری به شکل پودر، گرانول، یا خمیر در آمده و به ادوات قالب گیری تغذیه می شوند.

کامپوزیت های پلیمری

اصلاح پلیمرهای آلی بوسیله ی اضافه کردن افزودنی به آنها انجام می شود. به جز چند استثناء در بیشتر این مواد از یک سیستم چند جزئی که شامل افزودنی ها دریک زمینه ی پلیمری است، تشکیل شده است. مخلوط های حاصله به خاطر میکروساختار یا ماکروساختار بی همتا شاخص هستند. در واقع این خصوصیات بی همتا باعث پدید آمدن خواص ممتاز در پلیمر می شوند.

دلایل عمده برای استفاده از افزودنی ها عبارتست از:

۱)اصلاح خواص و بهبود آنها
۲)کاهش هزینه ی کل
۳) بهبود و کنترل ویژگی های مربوطه به تولید قطعه ی پلیمری

علاوه بر کامپوزیت های پلیمری (Polymer composites) که در این مقاله معرفی می شوند، انواع مهم سیستم های پلیمری اصلاح شده شامل آمیزه های پلیمر- پلیمروفوم های پلیمری نیز وجود دارند. که بررسی مطالعه ی آنها خارج از لطف نیست.

نوع و اجزا کامپوزیت های پلیمری

کامپوزیت های پلیمری مخلوط هایی از پلیمرها به همراه افزودنی های آلی و غیر آلی است. در واقع این افزودنی ها دارای هندسه ی معنی مانند الیاف، فلس مانند (Flakes)، کره مانند و ذره ای هستند. بنابراین آنها دارای دو یا چند جزء و یا دو یا چند فاز هستند. افزودنی ها ممکن است مداوم باشند (مانند الیاف بلند یا نوار) که در زمینه ی پلیمری و با نظم هندسی منظم قرار گرفته اند. این قرارگیری منظم در کل محصول وجود دارد. مثال هایی آشنا از این نوع کامپوزیت ها، ورقه های تقویت شده با الیاف هستند که معمولا به عنوان کامپوزیت های پلیمری با کارایی بالا (high-performanu polymer composites) یا ماکروکامپوزیت های بر پایه ی الیاف یا نوارهای طویل طبقه بندی می شوند. به عبارت دیگر افزودنی ها ممکن است غیر مداوم باشند. برای مثال الیاف کوتاه (دارای طولی کمتر از ۳ سانتیمتر)، فلس مانندها، پلیت لت ها (Platelets)، کره مانندها یا اشکال غیر منظم (در ابعاد میکرومترو میلی متر). الیاف و فلس مانندها معمولا در جهات مختلف پخش می شوند و دارای الگوهای هندسی چندگانه در میان زمینه ی ترموپلاست تشکیل شده اند و کا ربرد کمتری نسبت به کامپوزیت های با افزودنی های مداوم دارند. هنگامی که الیاف، پلیت لت ها و یا کره مانندها به عنوان فاز پخش شونده دارای ابعادی در حد نانومتر باشد، کامپوزیت های بوجود آمده به عنوان نانوکامپوزیت شناخته می شوند (شکل ۱ نشان دهنده ی نانوپلیت لت های هیدروتالکیت است) تفاوت نانوکامپوزیت های با میکروکامپوزیت ها در این است که آنها دارای سطح تماس بسیار بیشتری بین فازهای تشکیل دهنده ی خود هستند. به خاطر خواص منحصر به فرد، نانوکامپوزیت ها دارای پتانسیل استفاده شدن در کاربردهای پیشرفته را دارند.
کامپوزیت ها همچنین براساس منشأ (طبیعی یا مصنوعی) زمینه یا پر کننده نیز طبقه بندی می شوند. طبیعت از کامپوزیت ها در مواد سخت استفاده کرده است. این مواد سخت دارای ساختار پیچیده ای از مواد فیبری یا ذره ای هستند که در زمینه ای آلی قرار گرفته اند (این زمینه مانند چسب عمل می کند) چوب یک کامپوزیت است که از الیاف سلولز به همراه لیگنین (lignin) تشکیل شده است. استخوان یک ماده ی کامپوزیت از کلاژن (collagen) و سایر پروتئین ها به همراه نمک های کلسیم فسفات است. ابریشم تولیدی از عنکبوت شامل نانوکریستال های آلی در یک زمینه ی آمورف و آلی است. پوسته ی حلزون از لایه های یک ماده ی مینرالی سخت تشکیل شده است که بوسیله ی یک بایندر پروتئینی از همدیگر مجزا شده اند. یک ساختار صفحه ای مشابه تولید شده است که بوسیله ی قرارگیری فلس های میکا در یک زمینه ی پلیمر مصنوعی به دست می آید. این پلیمر مصنوعی ترموست به همراه میکای فلس مانند تشکیل مجراهای عبور بخار و مایع در یک میکروکامپوزیت می دهد.
کامپوزیت ها را همچنین می توان براساس کاربرد آنها طبقه بندی کرد. برای مثال شخصی می تواند مابین دو بیوکامپوزیت تفاوت قائل شود مثلا بیوکامپوزیت های مورد مصرف برای کاربردهای اکولوژی (ecological applications) که از ترکیب الیاف یا ذرات طبیعی به همراه زمینه ای پلیمری تشکیل شده اند. (این پلمیرها از منابع بازگشت پذیر و غیر قابل بازگشت پذیر تهیه می شوند). این نوع بیوکامپوزیت ها به خاطر داشتن خاصیت تخریب پذیری بوسیله محیط طبیعی، ممتاز هستند. بیوکامپوزیت های مورد استفاده در بیوپزشکی از پلیمرهای تخریب پذیر یا مقاوم در برابر عوامل بیولوژیک تشکیل شده اند که بوسیله ی پر کننده های با سطح فعال یا خنثی اصلاح شده اند. این نوع بیوکامپوزیت ها در شکسته بندی (orthopedics)، ترمیم استخوانی (bone regeneration) یا کاربردهای مهندسی بافت کاربرد دارند.
افزودنی های مورد استفاده در کامپوزیت های پلیمری به صورت های مختلفی طبقه بندی می شوند مثلا برخی از آنها تقویت کننده، برخی پرکننده و برخی ترکیبی از خاصیت پرکنندگی و تقویت کنندگی را پدید می آورند. تقویت کننده ها دارای سفتی و استحکام بیشتری نسبت به پلیمرها هستند. و معمولا این مواد باعث افزایش مدول و استحکام پلیمری می شوند. علاوه بر خواص مکانیکی سایر خواص یک پلیمر نیز تحت تأثیر این مواد افزودنی هاست. در واقع فرآیندهای اصلاح کننده ی خواص مکانیکی می تواند بر روی سایر خواص و عملکردهای پلیمر تأثیر گذارد. مثلا خواصی همچون انبساط حرارتی، ترانسپارنتی، پایداری حرارتی و… را تغییر دهد. کامپوزیت های مداوم از الیاف و نوارهای تقویت کننده در یک زمینه که معمولا ماده ای ترموست است، تشکیل شده است.
در این کامپوزیت ها تقویت کننده در حالت های خاصی قرار می گیرد که در صورتی که این قرارگیری به صورت مشخصی باشد، تقویت کننده به عنوان فاز اصلی (مثلا در کامپوزیت های جهت دار تا ۷۰ درصد کامپوزیت را تقویت کننده تشکیل داده است) کامپوزیت می شود. در کامپوزیت های غیر مداوم، عوامل تقویت کننده (الیاف کوتاه یا فلس ها) در جهات مختلف و الگوهای هندسی چندگانه قرار دارند که این الگوها بوسیله ی فرآیند تولید و شکل دهی که معمولا قالب گیری تزریقی یا اکسترون است، تعیین می گردد. در این مورد، میزان افزودنی معمولا از ۳۰-۴۰ درصد حجمی بیشتر نمی شود. این مسئله باید مورد توجه قرار گیرد که به هر حال، روش تولید برای کامپوزیت های ترموپلاست تقویت شده با الیاف مداوم به گونه ای است که می توان درصد بالاتری از الیاف را در آنها بکار برد.
در این مقاله از واژه ی تقویت کننده برای بیان الیاف کوتاه، مداوم یا نوارها استفاده نمی کنیم بلکه از واژه ی پرکننده (Filler) یا پرکننده ی ساختاری (Functional Filler) استفاده می کنیم که منظور از آن در اغلب موارد الیاف کوتاه یا بلند، فلس ها، پلیت لت ها و ذرات است.

پارامترهای موثر بر خواص کامپوزیت ها

عموما پارامترهای موثر بر خواص کامپوزیت های پلیمری – خواه مداوم خواه غیر مداوم- عبارتند از:
۱)خواص افزودنی (خواص ذاتی، اندازه و شکل)
۲)ترکیب آنها
۳)میانکنش اجزای موجود در فاز مرز دانه. این میانکنش همچنین به حضور یک میان لایه ی نازک که به فاز (inter phase) معروف است، مربوط می شود. البته این فاز میانی در اغلب موارد به عنوان یک فاز مجزا درنظر گرفته می شود. این فاز کنترل کننده ی چسبندگی میان اجزای کامپوزیت است.
۴)روش ساخت
با توجه به روش ساخت، تمام فرآیندهای موجود در جدول ۱ که برای ترموپلاست های اصلاح نشده (بدون پرکننده) قابل استفاده اند برای کامپوزیت های غیرمداوم نیز قابل استفاده اند (به استثناء روش قالب گیری مهره ای انبساطی (expandable bead molding). علاوه بر فرم دهی گرمایی عمدتاً، استمپینگ گرم (hot stamping) صفحات ترموپلاست تقویت شده برای تولید بخش های نیمه ساختاری بزرگ استفاده می شوند (این صفحات داری الیاف مداوم یا غیرمداوم است که به صورت اندوم قرار گرفته اند)
پرکننده ها همچنین در فرآیندهای ساخت ترموست ها در جدول ۱ استفاده کرد. در واقع این فرآیندهای تولید ترموست ها در اغلب موارد از تقویت کننده های فیبری مداوم بهره می گیرد. درصد و خواص ذاتی افزودنی ها به همراه میانکنش های فیزیکی /شیمیایی آنها با زمینه، پارامترهای مهم کنترل کننده ی تولید می باشند.

تأثیرات تقویت کننده/پرکننده

اکثر پرکننده ها به عنوان افزودنی در نظر گرفته می شوند که به دلیل خصوصیات هندسی نامنظم، مساحت سطح یا ترکیب شیمیایی سطح نامناسب تنها می توانند مدول پلیمرها را به طور متوسط افزایش دهند. این در حالی است که استحکام فشاری و پیچشی آنها ثابت مانده و حتی در مواردی کاهش می یابد. عمده ترین نقش پرکننده ها، کاهش قیمت ماده بوسیله ی جایگزینی بخشی از پلیمر گران بها با این مواد است.
مزیت های اقتصادی دیگر که از استفاده از پرکننده ها به دست می آید عبارتند از افزایش سیکل قالب گیری به خاطر افزایش هدایت حرارتی ماده و کاهش تولید قطعات تاب دار می گردد. بسته به نوع پرکننده، سایر خواص پلیمرها نیز می تواند تحت تأثیر قرار گیرد برای مثال ویسکوزیته ی مذاب پلیمری می تواند به طور قابل توجهی افزایش یابد. (این خاصیت به دلیل پدید آمدن پیوستگی حاصل از پرکننده های الیافی در پلیمر پدید می آید). به عبارت دیگر انقباض پس از قالب گیری و انبساط گرمایی می تواند کاهش یابد که این یک اثر معمولی حاصل از اکثر پرکننده های غیر آلی است.واژه ی پرکننده ی تقویت کننده (reinforcing filler) برای توصیف افزودنی های غیرمداوم استفاده می شود. این افزودنی ها که دارای فرم، شکل و شیمی سطح خاصی هستند، به طور مناسب خواص مکانیکی پلیمر را اصلاح می کند (به خصوص استحکام آن را). پرکننده های تقویت کننده ی غیر آلی از زمینه سفت ترند و دفورمگی کمتری دارند. این مسئله باعث می شود تا کرنش زمینه مخصوصا در مجاورت ذرات کاهش کلی داشته باشد. این مسئله نتیجه ای از میانکنش زمینه- ذرات است. همانگونه که در شکل ۴ نشان داده شده است. فیبر پلیمر را در نزدیکی خود تحت تنش قرار داده، کرنش را کاهش می دهد و سفتی را افزایش می دهد. پرکننده های تقویت کننده بوسیله ی نسبت α به صورت نسبت طول بر قطر الیاف یا نسبت قطر به ضخامت پلیت لت و فلس تعریف می گردد. این نسبت ثابت است. یک پارامتر مفید برای مشخص نمودن تأثیر یک پرکننده نسبت مساحت (A) به حجم (V) آن است. هر چه این نسبت بیشتر باشد اثر تقویت کنندگی آن بیشتر است. شکل ۵ نشان می دهد که برای حداکثر کردن نسبت A به V و میانکنش زمینه ذرات باید α برای الیاف بسیار بزرگتر از یک باشد. در مورد پلیت لت ها یک به α باید بسیار کوچکتر از یک باشد.
در توسعه ی پرکننده های تقویت کننده، رسیدن به تولید یا اصلاح مواد باعث افزایش نسبت ظاهری ذرات می شود و قابلیت چسبندگی بین ذرات و زمینه ی پلیمری را زیاد می کند. یک چنین اصلاحی ممکن است نه تنها باعث افزایش و بهینه سازی عملکرد اولیه ی پرکننده (مانند اصلاح خواص مکانیکی) گردد اما همچنین باعث افزایش عملکردهای دیگر آن نیز می گردد. با افزوده شدن پرکننده و اصلاح پلیمرها بوسیله ی پرکننده های موجود، عملکردهای جدید در آنها بوجود می آید بنابراین کاربردهای این پلیمرهای بهبود یافته توسعه می یابد. در زیر مثال هایی از این موارد آورده شده است:
همانگونه که هینولد (Heinold) توضیح داده است، اولین استفاده از پرکننده ها به سرعت پس از تجاری سازی پلی اتیلن انجام شد. در آن زمان پرکننده هایی مانند پلیت لت های تالک و الیاف آزبست (پنبه نسوز) استفاده می شده است که این پرکننده ها تأثیرات مثبتی بر روی سفتی (stiffness) و مقاومت گرمایی پلیمر دارند. پرکننده ی آزبستی به خاطر مسائل سلامتی و به دلیل آنکه ماده ای سرطان زا است، بوسیله ی ذرات کلسیم کربنات و فلس های میکا جایگزین گشت. این مسأله فهمیده شد که افزودن میکا نسبت به تالک تأثیر بیشتری بر روی سختی و مقاومت حرارتی داشته و میزان این دو پارامتر را بیشتر افزایش می دهد. این در حالی است که کلسیم کربنات تأثیر کمتری بر روی افزایش سختی دارد اما مقاومت به ضربه ی هموپلیمر پلی پروپیلن (pp) را افزایش می دهد. اصلاح سطحی میکا با عوامل اتصال دهنده (Coupling agents) برای افزایش چسبندگی انجام می شود. همچنین کلسیم کربنات بوسیله ی استریت (Stearate) اصلاح می گردد. این اصلاح پرکننده ها کمک می کند یکنواختی و عملکرد این عوامل افزایش یابد و مزایایی همچون بهبود کارپذیری (مانند کنترل رنگ و کاهش زمان ایجینگ گرمایی) دارد. سایر پرکننده ها عملکردهای مختلفی به پلیمر می دهند برای مثال برلیم سولفات جذب صدا را افزایش می دهد. ولاستونیت (wellastonite) مقاومت به ایجاد خزش را بالا می برد. کره های شیشه ای جامد باعث پایداری ابعادی و افزایش سختی می شوند. کره های شیشه ای توخالی دانسیته ی پلیمر را کاهش می دهند و ترکیباتی از الیاف شیشه ای به همراه الیاف ذره ای باعث پدید آمدن خواص ممتازی در قطعه می شوند که بوسیله ی افزودن یک پرکننده ایجاد نمی شوند. افزودن بر مثال هایی که گفته شد، یکی ازخانواده های پرکننده ها که خواص جدید و ممتازی به پلیمر می دهند، رنگ دانه های پیرلسنت (pearleseent pigments) هستند. که بوسیله ی تکنیک پوسته- هسته ساخته شده اند. این رنگ دانه ها از پلیت لت های میکا، سیلیس، آلومینا یا مواد شیشه ای تولید شده اند که بوسیله ی یک فیلم از نانوذرات اکسیدی (مانند:cr2o3, Fe2o3, Tio2 پوشش داده می شوند. (شکل ۶). علاوه بر کاربردهای تزئینی متداول، کاربردهای جدیدی همچون انعکاس دهنده های گرمای خورشید، نشان گذاری لیزر بر روی پلاستیک و رسانایی الکتریکی بوسیله ی انتخاب ترکیبات مناسب از زمینه/ امکان پذیر است.

قوانین ترکیبات برای کامپوزیت ها

عموما قوانین مربوط به اختلاط آمیزه ها (که دراغلب موارد با توجه به نوع، شکل و جهت تقویت کننده/پرکننده اصلاح می گردند) برای توصیف خواص مشخصی از کامپوزیت ها استفاده می شود مثلا:
۱) غلظت : غلظت معمولا در حالت حجمی بیان می گردد. در واقع این غلظت ها عبارتند از نسبت حجمی پرکننده Vf و نسبت حجمی Vm این نسبت ها بوسیله ی حجم پرکننده Vf و حجم زمینه Vm اجزای کامپوزیت به دست می آیند. در شکل ۱ فرمول های مربوطه دیده می شوند.2کسر حجمی برای پیش بینی دانسیته ی تئوریک کامپوزیت استفاده می شود. این کسر حجمی براساس دانسیته ی نسبی اجزای کامپوزیت محاسبه می گردد. در شکل ۲ فرمول مربوطه دیده می شود.3قیمت کل بر واحد وزن کامپوزیت (C) : این عدد را می توان از کسر حجمی و قیمت های تک تک اجزا و قیمت اجزا بر واحد حجم کامپوزیت (Ci) محاسبه نمود (شکل ۳)پس از قراردهی قیمت ها در فرمول، قیمت کامپوزیت ممکن است بالاتر یا پایین تر از قیمت پلیمر بدون پرکننده باشد. برای پلاستیک های ارزان قمیت مورد استفاده در تولید کالا واژه ی پرکننده به ماده ای دلالت دارد که قمیت را کاهش می دهد از این رو استفاده از پرکننده های معدنی در این نوع مواد می تواند قیمت تولید را کاهش دهد. برای ترموپلاست های دما بالا که درمحصولات گران بها کاربرد دارند، قیمت نهایی کامپوزیت از قمیت پلیمر بدون پرکننده کمتر است. (مثلا پلی اتر ایمید تقویت شده با الیاف شیشه ای).

پرکننده های کاربردی-طبقه بندی و انواع

واژه ی پرکننده واژه ای عمومی است و شامل گستره ی وسیعی از مواد است.تنوع گسترده ای در ساختار شیمیایی، شکل، حالت، اندازه وخواص ذاتی ترکیبات مورد استفاده به عنوان پرکننده وجود دارد. این مواد آلی یا غیر آلی معمولا موادی صلب هستند که در حالت جامد و مذاب در زمینه حلالیت ندارند و معمولا ساختاری دارند که بیشترین پراکنده شدن را در زمینه داشته باشند. ویژگی عمومی پرکننده ها این است که این مواد معمولا در غلظت های نسبتا بالا (بیش از ۵% حجمی) استفاده می شوند. این در حالی است که اکثر اصلاح کننده های سطحی و مواد افزودنی معمولا در غلظت های پایین مصرف می شوند. پرکننده ها ممکن است براساس آلی یا غیر آلی بودن طبقه بندی شوند. طبقه بندی های دیگر برای آنها براساس خانواده ی شیمیایی (جدول۱) یا براساس اشکال آنها و اندازه و نسبت ظاهری (جدول ۲) انجام می شود.بیش از ۷۰ نوع ذره ی فلس و بیش از ۱۵ نوع فیبر طبیعی یا مصنوعی وجود دارند که به عنوان پرکننده در پلیمرهای ترموپلاست و ترموست کاربرد دارند. معمولی ترین پرکننده های ذره ای مورد استفاده مینرال های صنعتی مانند تالک، کلسیم کربنات، میکا، کائولن، ولاستونیت، فلدسپار و هیدروکسید آلومینیوم است. معمولی ترین پرکننده ی فیبری الیاف شیشه ای و الیاف طبیعی هستند. کربن بلک سالیان درازی است که به عنوان نانوپرکننده مصرف می شود. افزودنی های جدید به سرعت به صورت تجاری درمی آیند. از جمله ی این پرکننده ها می توان نانورس هایی مانند مونت موری لونیت و هیدروتالکیت و انواع متنوعی از اکسیدها و نانو الیافی مانند نانوتیوپ های کربن را نام برد. نانوتیوپ های کربنی هالوسایت و صفحات گرافیتی پتانسیل استفاده شدن در نانوکامپوزیت های پیشرفته را دارند. (صفحات گرافیتی لایه های تکی از اتم های کربن هستند که در حالت لانه زنبوری قرار دارند همچنین نانوتیوپ های کربنی هالوسایت نانوتیوپ های طبیعی هستند که بوسیله ی هوازدگی سطحی مینرال های آلومینوسیلیکاتی بوجود می آیند)
یک روش مرسوم در طبقه بندی افزودنی های پلاستیک این گونه است که پرکننده ها را براساس عملکرد ویژه ی آنها طبقه بندی می کنند مثلا قابلیت اصلاح خواص مکانیکی، الکتریکی، گرمایی، عدم آتش گرفتن، خواص تولید، نفوذ حلال یا قیمت تولید و… به هر حال پرکننده ها دارای عملکردی چندگانه اند و ممکن است چنین عملکرد یک پلیمر را تحت تأثیر قرار دهند. البته در اکثر موارد برخی از عملکردها به صورت افراطی افزایش می یابند.

کاربردها ، زمینه ها و چالش ها

تقاضای جهانی برای پرکننده ها/ الیاف تقویت کننده مانند کلسیم کربنات، آلومینیوم تری هیدرات، تالک، کائولن، میکا، ولاستونیت، الیاف شیشه، الیاف آرامید، الیاف کربن و کربن بلک برای صنعت پلاستیک تقریبا پانزده میلیون تن تخمین زده شده است. بازار عمده ی مصرف این مواد صنعت ساختمان و حمل و نقل است. صنعت مبلمان، ماشین آلات، الکترونیک، بسته بندی سایر بازارهای مصرف این مواد هستند که به نسبت دو بازار دیگر میزان مصرف آنها کمتر است. مدول خمشی و مقاومت گرمایی دو ویژگی بحرانی برای پلاستیک هاست که بوسیله ی افزایش مینرال های کاربردی ایجاد می گردد. بخش های بیرونی خودرو، مواد ساختمانی، مبلمان صحرایی و اجزای بیرونی تجهیزات مثال هایی از کاربردهایی هستند که از افزایش مدول خمشی پلیمرها نفع می برند. بخش های داخلی اتومبیل و بخش های داخلی هود آشپزخانه، اتصالات الکتریکی، اجاق های ماکروویو، مثال هایی از کاربردهایی هستند که نیازمند مقاومت در برابر دماهای بالا هستند. تحت شرایط محیطی و بهبود تحمل بخش های اتومبیل به خاطر استفاده از کامپوزیت های الیافت طبیعی است. آماری که اخیرا (سال ۲۰۰۷) منتشر شده است نشان می دهد که نیاز ایالات متحده ی آمریکا برای پرکننده ها و مینرال های کمکی برای رنگرزی ۳٫۲ میلیون تن در سال است. که میزان این رشد برای پرکننده های کنترل کننده ی آتش گرفتن مانند آلومینیوم هیدروکسید بسیار بیشتر از این مقدار است (۵٫۵-۷%). این اطلاعات نشان می دهد که بیشترین نیاز در مورد کلسیم کربنات دیده می شود و پس از کلسیم کربنات، Tio2 و آلومینیوم تری هیدرات قرار دارند.
تالک، کائولن، میکا، ولاستونیت، سیلیس، باریت و آرگانورس ها سهم بسیار کمتری از بازار را دارند.
پیشرفت های فنی زیادی در زمینه ی تولید پرکننده ها پدید آمده است که توانسته رشد فزاینده ای در استفاده از پرکننده های ساختاری پدید آورد. برای مثال تولید پلاستیک های اصلاح شده با چوب بوسیله ی اکسترودرهای خاص ومنافذ خروج رطوبت انجام می شود. برای میکا و تالک روش های آسیاب کردن خاصی توسعه یافته است، تا خاصیت ورقه ای بودن آنها و نسبت ظاهری این پرکننده های صفحه ای حفظ گردد. همچنین در مورد سایر پرکننده ها، تولید ذرات بسیار ریز بوسیله ی روش های آسیاب کردن خاص انجام شده است. برای جلوگیری از کلوخه شدن، پراکندگی و پوسته شدن نانورس های کلوخه ای شده (شکل ۴) مخصوصا در دماهای بالای مواد ترموپلاست، اصلاح کننده های رس استفاد می شود. این مواد همراه با افزودنی هایی همچون مایع های یونی (ionic liquids) استفاده می شود. این مواد پایداری گرمایی بالاتری نسبت به اصلاح کننده های آلکیلو آمونیوم موجود دارند. علاوه بر این ترکیبات، مذاب پلیمری بوسیله ی تیغه های اکسترودر بهبود یافته (از لحاظ شکل) و با مساعدت نورالتراسونیک و یا استفاده از مایعات فوق بحرانی، خواص بین سطحی بهتری پیدا کرده و پراکندگی و چسبندگی بهتری پیدا می کنند و میزان کلوخه ای شدن پرکننده ها در آنها به حداقل ممکنه می رسد. همچنین اصلاح فرآیند و ادوات باعث می گردد تا جهت گیری مطلوب زنجیره های پلیمری تضمین گردد و نسبت ظاهری بالاتری به دست آید.

تعدادی از کاربردهای جدیدی که برای کامپوزیت های دارای نانورس های کاتیونی-آنیونی، نانواکسیدها، نانوتیوپ های کربنی و Tio2 بسیار ریز، تالک و هیدروکسی آپاتیت مصنوعی به وجود آمده عبارتست از:

۱)مواد ساختاری با خواص مکانیکی، گرمایی و ممانعتی بهبود یافته
۲)مواد با کارایی بالا با جذب فرابنفش بهتر و مقاومت به خراش بهتر
۳)بسته بندی های مانع برای تخریب اکسیژن
۴)پرکننده های چند عملکردی که می توانند به روش کنترل شده آزاد شوند. این پرکننده ها می توانند خوردگی را آشکار کرده، از خوردگی جلوگیری کنند، ضد حشره باشند و به عنوان یک جزء دارویی مصرف شوند.
۵)مواد بیواکتیو برای کاربردهای مهندسی بافت
آدرس صفحه برای لینک دادن:      http://www.gfactor.org/ArticleShow.aspx?AID=58